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Reinforcement Learning

Figure 1: Atari breakout game, 1976.

Current state: image

Two actions: left, right

Objective: maximizing upcoming rewards
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Principle

Figure 2: Principle of Reinforcement Learning [Sutton and Barto, 2018]. Agent is
modeled by a learned function π : S 7→ A.

Maximize the expected reward:

max
π∈AS

∑
t≥0

γtrt

with typically γ = 0.99
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Markov Decision Processes: Four Rooms instance

Four rooms:

S = J1 ; 100K, A = {N,S,E,W}
Reward: −1 until exit is reached, 0 otherwise.

Step forward with probability .8 (if step is doable)
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Four Rooms optimal Value Function V ∗

Orso Forghieri State Abstraction discovery 5 / 54



Increasing complexity
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Our strategy

Assuming exact knowledge of transition and reward functions, we

assimilate all states in a single region

create new regions for outlying states

update the value function on each region

Which results in

A partition of the problem that describes its structure

An approximation of the optimal solution with arbitrary
precision
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Markov Decision Process

Definition (Markov Decision Process)

A Markov Decision Process is defined as:

A discrete state space S
An discrete action space A
Stochastic transition st+1 ∼ T (st, at, .) (one step memory)

Immediate reward R(st, at)
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Markov Decision Process

Solve the MDP ⇐⇒ Maximizing upcoming rewards relatively to π

⇐⇒ max
π∈AS

E
st+1∼T (st,at,·)

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s

]
⇐⇒ max

π∈AS
V π(s)
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Value Function

Definition (Value function, optimal value function)

Value function of a policy:

V π(s) = E
st+1∼T (st,at,·)

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s

]

Optimal Value Function:

V ∗(s) = max
π

V π(s)
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Bellman equations

Theorem (Optimal Bellman equation)

V ∗ is the unique solution of the optimal Bellman equation:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′) · V ∗(s′)

)
:= T ∗V ∗

Moreover, the Bellman operator T ∗ : RS 7→ RS contracts space with
factor γ < 1.

→ Fixed point theorem : iterating T ∗ make any V converge to the
solution of V ∗ = T ∗V ∗

→ But : necessity to update each state n times for large spaces

∥V ∗ − (T ∗)nV ∥∞ ≤ γn∥V ∗ − V ∥∞
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Bellman operators

Definition (Bellman operators)

For a given policy π, we define the Bellman operator

T π : V → R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V (s′)

with optimal Bellman operator

T ∗ = max
π
T π
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Bellman operators

Definition (Q-value)

Let us define the Q-value

Q(s, a) = E

∑
t≥0

γtrt|s0 = s, a0 = a


→ It is the value function but we also set the first action

we define its Bellman operator

T π : Q(s, a)→ R(s, a) + γ
∑
s′∈S

T (s, a, s′).Q(s′, π(s′))
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MDP solving

Finally,

Solve an MDP

⇐⇒ Solve max
π

V π

(Policy Gradient, Actor-Critic, Deep Reinforcement Learning...)

⇐⇒ Solve min
V ∈RS

∥V − T ∗V ∥∞

(Dynamic Programming, TD-Learning...)
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Dynamic Programming

Two main approches:

Value Iteration:{
V0 = 0

Vt+1 ← T ∗Vt

until ∥Vt+1 − Vt∥∞ ≤ (1− γ)ε

Policy Iteration:
V0 = 0

π0 = 0

Vt+1 = (T π)nVt (Policy Evaluation)

πt+1 = argmaxa∈A (Ra + γTa · Vt+1)

until πt+1 = πt
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Value Iteration on Four Rooms

Figure 3: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100
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Value Iteration on Four Rooms

Figure 4: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100
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Value Iteration on Four Rooms

Figure 5: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100

Orso Forghieri State Abstraction discovery 19 / 54



Value Iteration on Four Rooms

Figure 6: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100
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Approximate Value Iteration [Powell, 2007]

Value Iteration {
V0 = 0

Vt+1 ← T ∗Vt

is replaced by {
V0 = 0

Vt+1 ← argminV ∈V ∥V − T ∗Vt∥

where V ⊂ S. In our work
V = { piecewise constant value functions with fixed partition}.

→ Cheaper iterations but slower...
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Natural State Abstraction for Four Rooms
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Context: AVI for piecewise constant functions

Property (Projection of the Bellman operator
[Bertsekas and Tsitsiklis, 1996])

Let be

S =
⊔

k Sk a partition of the state space

Ṽ ∈ RS a piecewise constant value function relatevely to (Sk)k

V = {Ṽ }
Then:

argmin
V ∈V

∥V − T ∗Vt∥∞ = ϕ · (ϕT · ϕ)−1 · ϕT · T ∗V

where ϕ := (1s∈Sk
)k,s ∈ {0, 1}

K×S

We note ω = (ϕT · ϕ)−1 · ϕT and Π := ϕ · ω ∈ RS×S .

→ ΠT ∗ contracts space with factor γ
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Hierarchical Reinforcement Learning

HRL consists in

State Abstraction : build abstract MDP from state space partition

Action abstraction : train and apply sequence of actions to
develop skills
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A State Abstraction for Four Rooms

V∗ =


−96
−96.96
−96.96
−97.37

 ∈ R4
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Action abstraction discovery for Four Rooms

Figure 7: Option termination close to a door [Bacon et al., 2017] → Room exit skill !
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State Abstraction

Definition (Abstract MDP)

Let be

An MDPM = (S,A, T,R)

A partition S =
⊔

k Sk

ω ∈ [0, 1]K×S a matrix of weights summing to 1 :
∑

s∈Sk
ωk,s = 1

We define the associated Abstract MDPMA = (K,A, T,R) with

Abstract transition function : for any k, k′ ∈ K, for any ∀a ∈ A,

T(k, a, k′) =
∑
s∈Sk

∑
s′∈Sk′

ωk,s.T (s, a, s
′) = ω · T · ϕ

Abstract reward function

R(k, a) =
∑
s∈Sk

ωk,s.R(s, a) = ω ·R
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Abstraction and information loss

Theorem (Similar state aggregation [Abel et al., 2016])

Let be

A real value ϵ > 0

A partition S =
⊔

k Sk where, for any k ∈ K, for any ∀s, s′ ∈ Sk

and a ∈ A,
|Q∗(s, a)−Q∗(s′, a)| ≤ ϵ

MA the MDP associated to this partition

Then,

∥V ∗ − V π∥∞ ≤
maxs,aR(s, a)

(1− γ)2
ε

where π = argmaxa∈A (Ra + γTa · MA)

→ Similar states aggregation =⇒ bounded loss of performance
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Practical discovery of State Abstraction

We noticed

A few practical build of abstraction (without use of V ∗ or Q∗)

A link betweek Approximate VI and abstract MDPs

It follows

A disaggregation process (succession of Abstract MDPs)

Optimal value function approximation of each Abstract MDP
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Progressive State Space Disaggregation process 1

In the following, we

link the projected Bellman operator and abstract MDPs

estimate the quality of a given piecewise value function

suggest a way to produce useful abstraction

efficiently solve MDPs taking advantage of redundant states

0Progressive State Space Disaggregation for Infinite Horizon Dynamic
Programming, Forghieri, Castel, Hyon and Le Pennec, ICAPS2024
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Approximate Value Iteration and State Abstraction

Theorem (Project Bellman operator and Approximate Value
Iteration, O.F.)

Let us consider

S =
⊔

k Sk a partition of an MDPM
MA the associate abstract MDP

Π · T ∗
Q the projected Bellman operator on the set of piecewise

constant Q value functions

Then, for any Q ∈ RK ,

ϕ · T ∗
Q,AQ = ΠT ∗

Q(ϕ ·Q)

→ projected Bellman operator ≈ abstract MDP Bellman operator

→ projected Bellman operator is cheap to compute !
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Approximate Value Iteration and State Abstraction

Proof.

For any Q ∈ RK ,

ϕ · T ∗
Q,AQ = ϕ ·

(
R+ γ.T ·max

a∈A
Q

)
= ϕ ·

(
ω ·R+ γ.ω · T · ϕ ·max

a∈A
Q

)
= ϕ · ω ·

(
R+ γ.T ·max

a∈A
(ϕ ·Q)

)
= Π ·

(
R+ γ.T ·max

a∈A
Q̃

)
= ΠT ∗

QQ̃
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Quality of a piecewise constant value function

Theorem (Quality of a piecewise constant value function, O.F.)

Let us consider

A partition S =
⊔

k Sk ofM
A piecewise constant value Ṽ relatively to (Sk)k

The projected optimal Bellman operator ΠT ∗

Then,

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)
where SpanSk

(V ) := maxs∈Sk
V (s)−mins∈Sk

V (s).

→ Dependence on the piecewise constant Ṽ and on the aggregation !

→ True for T ∗
Q, T π
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Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

Two terms:

max1≤k≤K SpanSk

(
T ∗Ṽ

)
: do we lose information aggregating ?

∥Ṽ −ΠT ∗Ṽ ∥∞: is Ṽ close to optimal value of abstract MDP ?
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Proof of the bound

Lemma

∀V ∈ RS , ∥V ∗ − V ∥∞ ≤
1

1− γ
∥V − T ∗V ∥∞

Proof.

∀V ∈ RS ,

∥V ∗ − V ∥∞ ≤ ∥V ∗ − T ∗V ∥∞ + ∥T ∗V − V ∥∞
= ∥T ∗V ∗ − T ∗V ∥∞ + ∥T ∗V − V ∥∞
≤ γ∥V ∗ − V ∥∞ + ∥T ∗V − V ∥∞

Therefore,

∥V ∗ − V ∥∞ − γ∥V ∗ − V ∥∞ ≤ ∥T ∗V − V ∥∞

which concludes.
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Proof of the theorem

Proof.

(1− γ)∥V ∗ − Ṽ ∥∞ ≤ ∥Ṽ − T ∗Ṽ ∥∞
≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ + ∥ΠT ∗Ṽ − T ∗Ṽ ∥∞

≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ +max
k

SpanSk

(
T ∗Ṽ

)
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Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

Fortunately,

max1≤k≤K SpanSk

(
T ∗Ṽ

)
can decrease refining aggregation (Sk)k

∥Ṽ −ΠT ∗Ṽ ∥∞ can decrease iterating contracting ΠT ∗ over Ṽ

ΠT ∗ is cheaper to compute
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Approximate VI is cheaper to compute

Operator Complexity Approximation Complexity

T ∗ S3A ΠT ∗ S2KA

T π S3 ΠT π K3

T ∗
Q S3A ΠT ∗

Q K3A

Table 1: Number of operations necessary to update a value function.

→ Cheaper to compute, contract space with factor γ, but converge to
Ṽ ̸= V ∗... Need to refine aggregation !
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Progressive State Space Disaggregation process2

Let be ε the final precision to approximate V ∗. Starting with

K = 1, S1 = S
Ṽ0 = (0)s∈S

We iterate

Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ is smaller than ϵ

Compute Vt+1 := T ∗Vt. Divide each region until
maxs∈Sk

Vt+1 −mins∈Sk
Vt+1 is smaller than ϵ for each region

k ∈ J1 ; KK.

2Progressive State Space Disaggregation for Infinite Horizon Dynamic
Programming, Forghieri, Castel, Hyon and Le Pennec, ICAPS2024
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Disaggregation process

Figure 8: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]
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First disaggregation step

Figure 9: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]
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Second disaggregation step

Figure 10: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]
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Progressive Disaggregation Convergence

Theorem

Let (V, (Sk)k) denote the value and the abstraction computed by PDVI.
Then, the following properties hold.

1 The process finishes in a finite number of steps.

2 The distance to optimal value function checks:

∥ϕ ·V− V ∗∥∞ ≤
2ϵ

1− γ

Moreover, for any region k,

∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
.
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Progressive Disaggregation Convergence

Proof.

Two main arguments :

1 The number of partition strictly increases at each step

2 The bound

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)
ensure the claimed final precision.
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Remarks

Advantages :

Saving time on projected Bellman operator iterations ΠT ∗

Final Abstraction much smaller than original mdp : K ≪ |S|
Convergence guarantee !

Risks :

Too many disaggregation steps (maximum |S|)
Final Abstract could be the original MDP itself !

Orso Forghieri State Abstraction discovery 46 / 54



Performance Evaluation

Solving an MDP depends on

Its complexity (|S|, |A|, density of the transition matrix...)

Wanted final precision to approximate V ∗ (ε = 10−3 ⇏ π = π∗...)

Chosen discount γ and expected length of the trajectory
(γ ≪ 1 ⇐⇒ Value Iteration ≫ Policy Iteration)

→ We compare algorithm on the runtime ensuring the same final
precision
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Models used

Three MDPs with large state spaces :

Randomly drew stochastic transition matrix
(Garnets, [Archibald et al., 1995, Clement and Kroer, 2021])

Four Rooms environment [Hengst, 2012]

Real world Tandem Server Queues [Tournaire et al., 2022]
(Two servers in tandem, managing the number of VMs)
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Solving methods

Traditional Dynamic Programming :

Value Iteration

Policy Iteration

Alternative Aggregation approach :

Policy Iteration Modified with Adapative Aggregation Boosting
[Bertsekas et al., 1988]

Aggregation-Disaggregation for Temporal-Difference Learning
[Chen et al., 2022]

Progressive Disaggregation applied to :

Value Iteration, Q-Value Iteration

Policy Iteration Modified
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Random MDPs solving

Density VI PDVI PDQVI

1% 113.3± 1.0 6.6± 0.5 8.0± 0.4
10% 300.3± 10.9 7.5± 0.1 15.2± 0.3
25% 751.7± 16.0 6.2± 0.6 24.1± 0.8
45% 1397.7± 23.7 7.6± 1.3 36.3± 1.7
65% 1915.4± 54.2 6.7± 0.4 50.3± 3.6

Density MPI PDPIM Bertsekas

1% 3.0± 1.25 1.09± 0.23 2.8± 0.6
10% 1.65± 0.46 1.57± 0.45 2.5± 0.3
25% 1.17± 0.08 0.72± 0.11 1.5± 0.4
45% 1.83± 0.32 0.61± 0.21 2.0± 0.2
65% 2.86± 1.03 1.57± 0.74 3.3± 0.7

Table 2: Random MDPs mean solving time (s). |S| = 500, |A| = 50, γ = 0.99,
ε = 10−2, 10 experiments.
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Four Rooms solving

|S| VI PDVI PDQVI

36 2.72± 0.0 7.46± 0.4 103.28± 0.7
100 3.63± 0.1 6.77± 1.7 267.63± 2.6
196 3.57± 0.4 9.25± 2.7 276.04± 2.5
324 10.25± 0.8 14.16± 5.0 456.31± 7.9

|S| MPI PDPIM Bertsekas

36 2± 1 1± 0.1 1± 0.5
100 18± 3 2± 0.7 19± 0.9
196 29± 4 3± 0.4 29± 0.9
324 47± 7 10± 1.2 47± 0.6

Table 3: Four Rooms model mean policy-based solving time (s). Variable |S|,
|A| = 4, γ = 0.999, ε = 10−3, 10 experiments.
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Tandem Queues solving

|S| VI PDVI PDQVI

8100 12.1± 0.5 8.0± 1.3 15.3± 0.7
12544 41.5± 0.8 18.8± 1.8 35.3± 1.6

|S| MPI PDPI Bertsekas

8100 1442.5± 39.2 267.5± 5.6 1626.1± 13.4
12544 4211.0± 63.1 994.7± 6.3 3577.2± 14.8

Table 4: Tandem Queues model mean solving time (s). Variable |S|, |A| = 3,
γ = 0.99, ε = 10−2, 10 experiments.
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Conclusion

Here, we

linked Approximate Value Iteration and Abstract MDPs

Estimated aggregation quality

provided a practical way to build useful abstractions

evaluated this method on various environments

Upcoming work :

Total reward convergence proof

A larger benchmark

Opening piecewise constant approximation to model-free context
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