
State Abstraction discovery
for Model-Based Reinforcement Learning

Séminaire des doctorants du CMAP

Palaiseau City, April 24. 2024

Orso Forghieri

Orso Forghieri State Abstraction discovery 1 / 54

Reinforcement Learning

Figure 1: Atari breakout game, 1976.

Current state: image

Two actions: left, right

Objective: maximizing upcoming rewards
Orso Forghieri State Abstraction discovery 2 / 54

Principle

Figure 2: Principle of Reinforcement Learning [Sutton and Barto, 2018]. Agent is
modeled by a learned function π : S 7→ A.

Maximize the expected reward:

max
π∈AS

∑
t≥0

γtrt

with typically γ = 0.99
Orso Forghieri State Abstraction discovery 3 / 54

Markov Decision Processes: Four Rooms instance

Four rooms:

S = J1 ; 100K, A = {N,S,E,W}
Reward: −1 until exit is reached, 0 otherwise.

Step forward with probability .8 (if step is doable)

Orso Forghieri State Abstraction discovery 4 / 54

Four Rooms optimal Value Function V ∗

Orso Forghieri State Abstraction discovery 5 / 54

Increasing complexity

Orso Forghieri State Abstraction discovery 6 / 54

Our strategy

Assuming exact knowledge of transition and reward functions, we

assimilate all states in a single region

create new regions for outlying states

update the value function on each region

Which results in

A partition of the problem that describes its structure

An approximation of the optimal solution with arbitrary
precision

Orso Forghieri State Abstraction discovery 7 / 54

Table of Contents

1 Reinforcement Learning
Markov Decision Processes
Dynamic Programming and Approximate Dynamic Programming
Hierarchical Reinforcement Learning

2 Progressive State Space Disaggregation
Quality of a piecewise constant value function
Progressive Disaggregation
Experience

3 Conclusion

Orso Forghieri State Abstraction discovery 8 / 54

Markov Decision Process

Definition (Markov Decision Process)

A Markov Decision Process is defined as:

A discrete state space S
An discrete action space A
Stochastic transition st+1 ∼ T (st, at, .) (one step memory)

Immediate reward R(st, at)

Orso Forghieri State Abstraction discovery 9 / 54

Markov Decision Process

Solve the MDP ⇐⇒ Maximizing upcoming rewards relatively to π

⇐⇒ max
π∈AS

E
st+1∼T (st,at,·)

[∞∑
t=0

γtR (st, π(st)) |s0 = s

]
⇐⇒ max

π∈AS
V π(s)

Orso Forghieri State Abstraction discovery 10 / 54

Value Function

Definition (Value function, optimal value function)

Value function of a policy:

V π(s) = E
st+1∼T (st,at,·)

[∞∑
t=0

γtR (st, π(st)) |s0 = s

]

Optimal Value Function:

V ∗(s) = max
π

V π(s)

Orso Forghieri State Abstraction discovery 11 / 54

Bellman equations

Theorem (Optimal Bellman equation)

V ∗ is the unique solution of the optimal Bellman equation:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′) · V ∗(s′)

)
:= T ∗V ∗

Moreover, the Bellman operator T ∗ : RS 7→ RS contracts space with
factor γ < 1.

→ Fixed point theorem : iterating T ∗ make any V converge to the
solution of V ∗ = T ∗V ∗

→ But : necessity to update each state n times for large spaces

∥V ∗ − (T ∗)nV ∥∞ ≤ γn∥V ∗ − V ∥∞

Orso Forghieri State Abstraction discovery 12 / 54

Bellman operators

Definition (Bellman operators)

For a given policy π, we define the Bellman operator

T π : V → R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V (s′)

with optimal Bellman operator

T ∗ = max
π
T π

Orso Forghieri State Abstraction discovery 13 / 54

Bellman operators

Definition (Q-value)

Let us define the Q-value

Q(s, a) = E

∑
t≥0

γtrt|s0 = s, a0 = a

→ It is the value function but we also set the first action

we define its Bellman operator

T π : Q(s, a)→ R(s, a) + γ
∑
s′∈S

T (s, a, s′).Q(s′, π(s′))

Orso Forghieri State Abstraction discovery 14 / 54

MDP solving

Finally,

Solve an MDP

⇐⇒ Solve max
π

V π

(Policy Gradient, Actor-Critic, Deep Reinforcement Learning...)

⇐⇒ Solve min
V ∈RS

∥V − T ∗V ∥∞

(Dynamic Programming, TD-Learning...)

Orso Forghieri State Abstraction discovery 15 / 54

Dynamic Programming

Two main approches:

Value Iteration:{
V0 = 0

Vt+1 ← T ∗Vt

until ∥Vt+1 − Vt∥∞ ≤ (1− γ)ε

Policy Iteration:
V0 = 0

π0 = 0

Vt+1 = (T π)nVt (Policy Evaluation)

πt+1 = argmaxa∈A (Ra + γTa · Vt+1)

until πt+1 = πt

Orso Forghieri State Abstraction discovery 16 / 54

Value Iteration on Four Rooms

Figure 3: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100

Orso Forghieri State Abstraction discovery 17 / 54

Value Iteration on Four Rooms

Figure 4: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100

Orso Forghieri State Abstraction discovery 18 / 54

Value Iteration on Four Rooms

Figure 5: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100

Orso Forghieri State Abstraction discovery 19 / 54

Value Iteration on Four Rooms

Figure 6: Application of Value Iteration to Four Rooms instance. γ = 0.99, |S| = 100

Orso Forghieri State Abstraction discovery 20 / 54

Approximate Value Iteration [Powell, 2007]

Value Iteration {
V0 = 0

Vt+1 ← T ∗Vt

is replaced by {
V0 = 0

Vt+1 ← argminV ∈V ∥V − T ∗Vt∥

where V ⊂ S. In our work
V = { piecewise constant value functions with fixed partition}.

→ Cheaper iterations but slower...

Orso Forghieri State Abstraction discovery 21 / 54

Natural State Abstraction for Four Rooms

Orso Forghieri State Abstraction discovery 22 / 54

Context: AVI for piecewise constant functions

Property (Projection of the Bellman operator
[Bertsekas and Tsitsiklis, 1996])

Let be

S =
⊔

k Sk a partition of the state space

Ṽ ∈ RS a piecewise constant value function relatevely to (Sk)k

V = {Ṽ }
Then:

argmin
V ∈V

∥V − T ∗Vt∥∞ = ϕ · (ϕT · ϕ)−1 · ϕT · T ∗V

where ϕ := (1s∈Sk
)k,s ∈ {0, 1}

K×S

We note ω = (ϕT · ϕ)−1 · ϕT and Π := ϕ · ω ∈ RS×S .

→ ΠT ∗ contracts space with factor γ

Orso Forghieri State Abstraction discovery 23 / 54

Hierarchical Reinforcement Learning

HRL consists in

State Abstraction : build abstract MDP from state space partition

Action abstraction : train and apply sequence of actions to
develop skills

Orso Forghieri State Abstraction discovery 24 / 54

A State Abstraction for Four Rooms

V∗ =

−96
−96.96
−96.96
−97.37

 ∈ R4

Orso Forghieri State Abstraction discovery 25 / 54

Action abstraction discovery for Four Rooms

Figure 7: Option termination close to a door [Bacon et al., 2017] → Room exit skill !

Orso Forghieri State Abstraction discovery 26 / 54

State Abstraction

Definition (Abstract MDP)

Let be

An MDPM = (S,A, T,R)

A partition S =
⊔

k Sk

ω ∈ [0, 1]K×S a matrix of weights summing to 1 :
∑

s∈Sk
ωk,s = 1

We define the associated Abstract MDPMA = (K,A, T,R) with

Abstract transition function : for any k, k′ ∈ K, for any ∀a ∈ A,

T(k, a, k′) =
∑
s∈Sk

∑
s′∈Sk′

ωk,s.T (s, a, s
′) = ω · T · ϕ

Abstract reward function

R(k, a) =
∑
s∈Sk

ωk,s.R(s, a) = ω ·R

Orso Forghieri State Abstraction discovery 27 / 54

Abstraction and information loss

Theorem (Similar state aggregation [Abel et al., 2016])

Let be

A real value ϵ > 0

A partition S =
⊔

k Sk where, for any k ∈ K, for any ∀s, s′ ∈ Sk

and a ∈ A,
|Q∗(s, a)−Q∗(s′, a)| ≤ ϵ

MA the MDP associated to this partition

Then,

∥V ∗ − V π∥∞ ≤
maxs,aR(s, a)

(1− γ)2
ε

where π = argmaxa∈A (Ra + γTa · MA)

→ Similar states aggregation =⇒ bounded loss of performance

Orso Forghieri State Abstraction discovery 28 / 54

Practical discovery of State Abstraction

We noticed

A few practical build of abstraction (without use of V ∗ or Q∗)

A link betweek Approximate VI and abstract MDPs

It follows

A disaggregation process (succession of Abstract MDPs)

Optimal value function approximation of each Abstract MDP

Orso Forghieri State Abstraction discovery 29 / 54

Table of Contents

1 Reinforcement Learning
Markov Decision Processes
Dynamic Programming and Approximate Dynamic Programming
Hierarchical Reinforcement Learning

2 Progressive State Space Disaggregation
Quality of a piecewise constant value function
Progressive Disaggregation
Experience

3 Conclusion

Orso Forghieri State Abstraction discovery 30 / 54

Progressive State Space Disaggregation process 1

In the following, we

link the projected Bellman operator and abstract MDPs

estimate the quality of a given piecewise value function

suggest a way to produce useful abstraction

efficiently solve MDPs taking advantage of redundant states

0Progressive State Space Disaggregation for Infinite Horizon Dynamic
Programming, Forghieri, Castel, Hyon and Le Pennec, ICAPS2024

Orso Forghieri State Abstraction discovery 31 / 54

Approximate Value Iteration and State Abstraction

Theorem (Project Bellman operator and Approximate Value
Iteration, O.F.)

Let us consider

S =
⊔

k Sk a partition of an MDPM
MA the associate abstract MDP

Π · T ∗
Q the projected Bellman operator on the set of piecewise

constant Q value functions

Then, for any Q ∈ RK ,

ϕ · T ∗
Q,AQ = ΠT ∗

Q(ϕ ·Q)

→ projected Bellman operator ≈ abstract MDP Bellman operator

→ projected Bellman operator is cheap to compute !

Orso Forghieri State Abstraction discovery 32 / 54

Approximate Value Iteration and State Abstraction

Proof.

For any Q ∈ RK ,

ϕ · T ∗
Q,AQ = ϕ ·

(
R+ γ.T ·max

a∈A
Q

)
= ϕ ·

(
ω ·R+ γ.ω · T · ϕ ·max

a∈A
Q

)
= ϕ · ω ·

(
R+ γ.T ·max

a∈A
(ϕ ·Q)

)
= Π ·

(
R+ γ.T ·max

a∈A
Q̃

)
= ΠT ∗

QQ̃

Orso Forghieri State Abstraction discovery 33 / 54

Quality of a piecewise constant value function

Theorem (Quality of a piecewise constant value function, O.F.)

Let us consider

A partition S =
⊔

k Sk ofM
A piecewise constant value Ṽ relatively to (Sk)k

The projected optimal Bellman operator ΠT ∗

Then,

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)
where SpanSk

(V) := maxs∈Sk
V (s)−mins∈Sk

V (s).

→ Dependence on the piecewise constant Ṽ and on the aggregation !

→ True for T ∗
Q, T π

Orso Forghieri State Abstraction discovery 34 / 54

Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

Two terms:

max1≤k≤K SpanSk

(
T ∗Ṽ

)
: do we lose information aggregating ?

∥Ṽ −ΠT ∗Ṽ ∥∞: is Ṽ close to optimal value of abstract MDP ?

Orso Forghieri State Abstraction discovery 35 / 54

Proof of the bound

Lemma

∀V ∈ RS , ∥V ∗ − V ∥∞ ≤
1

1− γ
∥V − T ∗V ∥∞

Proof.

∀V ∈ RS ,

∥V ∗ − V ∥∞ ≤ ∥V ∗ − T ∗V ∥∞ + ∥T ∗V − V ∥∞
= ∥T ∗V ∗ − T ∗V ∥∞ + ∥T ∗V − V ∥∞
≤ γ∥V ∗ − V ∥∞ + ∥T ∗V − V ∥∞

Therefore,

∥V ∗ − V ∥∞ − γ∥V ∗ − V ∥∞ ≤ ∥T ∗V − V ∥∞

which concludes.

Orso Forghieri State Abstraction discovery 36 / 54

Proof of the theorem

Proof.

(1− γ)∥V ∗ − Ṽ ∥∞ ≤ ∥Ṽ − T ∗Ṽ ∥∞
≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ + ∥ΠT ∗Ṽ − T ∗Ṽ ∥∞

≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ +max
k

SpanSk

(
T ∗Ṽ

)

Orso Forghieri State Abstraction discovery 37 / 54

Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

Fortunately,

max1≤k≤K SpanSk

(
T ∗Ṽ

)
can decrease refining aggregation (Sk)k

∥Ṽ −ΠT ∗Ṽ ∥∞ can decrease iterating contracting ΠT ∗ over Ṽ

ΠT ∗ is cheaper to compute

Orso Forghieri State Abstraction discovery 38 / 54

Approximate VI is cheaper to compute

Operator Complexity Approximation Complexity

T ∗ S3A ΠT ∗ S2KA

T π S3 ΠT π K3

T ∗
Q S3A ΠT ∗

Q K3A

Table 1: Number of operations necessary to update a value function.

→ Cheaper to compute, contract space with factor γ, but converge to
Ṽ ̸= V ∗... Need to refine aggregation !

Orso Forghieri State Abstraction discovery 39 / 54

Progressive State Space Disaggregation process2

Let be ε the final precision to approximate V ∗. Starting with

K = 1, S1 = S
Ṽ0 = (0)s∈S

We iterate

Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ is smaller than ϵ

Compute Vt+1 := T ∗Vt. Divide each region until
maxs∈Sk

Vt+1 −mins∈Sk
Vt+1 is smaller than ϵ for each region

k ∈ J1 ; KK.

2Progressive State Space Disaggregation for Infinite Horizon Dynamic
Programming, Forghieri, Castel, Hyon and Le Pennec, ICAPS2024

Orso Forghieri State Abstraction discovery 40 / 54

Disaggregation process

Figure 8: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]

Orso Forghieri State Abstraction discovery 41 / 54

First disaggregation step

Figure 9: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]

Orso Forghieri State Abstraction discovery 42 / 54

Second disaggregation step

Figure 10: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]

Orso Forghieri State Abstraction discovery 43 / 54

Progressive Disaggregation Convergence

Theorem

Let (V, (Sk)k) denote the value and the abstraction computed by PDVI.
Then, the following properties hold.

1 The process finishes in a finite number of steps.

2 The distance to optimal value function checks:

∥ϕ ·V− V ∗∥∞ ≤
2ϵ

1− γ

Moreover, for any region k,

∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
.

Orso Forghieri State Abstraction discovery 44 / 54

Progressive Disaggregation Convergence

Proof.

Two main arguments :

1 The number of partition strictly increases at each step

2 The bound

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)
ensure the claimed final precision.

Orso Forghieri State Abstraction discovery 45 / 54

Remarks

Advantages :

Saving time on projected Bellman operator iterations ΠT ∗

Final Abstraction much smaller than original mdp : K ≪ |S|
Convergence guarantee !

Risks :

Too many disaggregation steps (maximum |S|)
Final Abstract could be the original MDP itself !

Orso Forghieri State Abstraction discovery 46 / 54

Performance Evaluation

Solving an MDP depends on

Its complexity (|S|, |A|, density of the transition matrix...)

Wanted final precision to approximate V ∗ (ε = 10−3 ⇏ π = π∗...)

Chosen discount γ and expected length of the trajectory
(γ ≪ 1 ⇐⇒ Value Iteration ≫ Policy Iteration)

→ We compare algorithm on the runtime ensuring the same final
precision

Orso Forghieri State Abstraction discovery 47 / 54

Models used

Three MDPs with large state spaces :

Randomly drew stochastic transition matrix
(Garnets, [Archibald et al., 1995, Clement and Kroer, 2021])

Four Rooms environment [Hengst, 2012]

Real world Tandem Server Queues [Tournaire et al., 2022]
(Two servers in tandem, managing the number of VMs)

Orso Forghieri State Abstraction discovery 48 / 54

Solving methods

Traditional Dynamic Programming :

Value Iteration

Policy Iteration

Alternative Aggregation approach :

Policy Iteration Modified with Adapative Aggregation Boosting
[Bertsekas et al., 1988]

Aggregation-Disaggregation for Temporal-Difference Learning
[Chen et al., 2022]

Progressive Disaggregation applied to :

Value Iteration, Q-Value Iteration

Policy Iteration Modified

Orso Forghieri State Abstraction discovery 49 / 54

Random MDPs solving

Density VI PDVI PDQVI

1% 113.3± 1.0 6.6± 0.5 8.0± 0.4
10% 300.3± 10.9 7.5± 0.1 15.2± 0.3
25% 751.7± 16.0 6.2± 0.6 24.1± 0.8
45% 1397.7± 23.7 7.6± 1.3 36.3± 1.7
65% 1915.4± 54.2 6.7± 0.4 50.3± 3.6

Density MPI PDPIM Bertsekas

1% 3.0± 1.25 1.09± 0.23 2.8± 0.6
10% 1.65± 0.46 1.57± 0.45 2.5± 0.3
25% 1.17± 0.08 0.72± 0.11 1.5± 0.4
45% 1.83± 0.32 0.61± 0.21 2.0± 0.2
65% 2.86± 1.03 1.57± 0.74 3.3± 0.7

Table 2: Random MDPs mean solving time (s). |S| = 500, |A| = 50, γ = 0.99,
ε = 10−2, 10 experiments.

Orso Forghieri State Abstraction discovery 50 / 54

Four Rooms solving

|S| VI PDVI PDQVI

36 2.72± 0.0 7.46± 0.4 103.28± 0.7
100 3.63± 0.1 6.77± 1.7 267.63± 2.6
196 3.57± 0.4 9.25± 2.7 276.04± 2.5
324 10.25± 0.8 14.16± 5.0 456.31± 7.9

|S| MPI PDPIM Bertsekas

36 2± 1 1± 0.1 1± 0.5
100 18± 3 2± 0.7 19± 0.9
196 29± 4 3± 0.4 29± 0.9
324 47± 7 10± 1.2 47± 0.6

Table 3: Four Rooms model mean policy-based solving time (s). Variable |S|,
|A| = 4, γ = 0.999, ε = 10−3, 10 experiments.

Orso Forghieri State Abstraction discovery 51 / 54

Tandem Queues solving

|S| VI PDVI PDQVI

8100 12.1± 0.5 8.0± 1.3 15.3± 0.7
12544 41.5± 0.8 18.8± 1.8 35.3± 1.6

|S| MPI PDPI Bertsekas

8100 1442.5± 39.2 267.5± 5.6 1626.1± 13.4
12544 4211.0± 63.1 994.7± 6.3 3577.2± 14.8

Table 4: Tandem Queues model mean solving time (s). Variable |S|, |A| = 3,
γ = 0.99, ε = 10−2, 10 experiments.

Orso Forghieri State Abstraction discovery 52 / 54

Table of Contents

1 Reinforcement Learning
Markov Decision Processes
Dynamic Programming and Approximate Dynamic Programming
Hierarchical Reinforcement Learning

2 Progressive State Space Disaggregation
Quality of a piecewise constant value function
Progressive Disaggregation
Experience

3 Conclusion

Orso Forghieri State Abstraction discovery 53 / 54

Conclusion

Here, we

linked Approximate Value Iteration and Abstract MDPs

Estimated aggregation quality

provided a practical way to build useful abstractions

evaluated this method on various environments

Upcoming work :

Total reward convergence proof

A larger benchmark

Opening piecewise constant approximation to model-free context

Orso Forghieri State Abstraction discovery 54 / 54

Abel, D., Hershkowitz, D., and Littman, M. (2016).
Near optimal behavior via approximate state abstraction.
In International Conference on Machine Learning, pages
2915–2923. PMLR.

Archibald, T., McKinnon, K., and Thomas, L. (1995).
On the generation of markov decision processes.
Journal of the Operational Research Society, 46(3):354–361.

Bacon, P.-L., Harb, J., and Precup, D. (2017).
The option-critic architecture.
In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31.

Bertsekas, D. and Tsitsiklis, J. N. (1996).
Neuro-dynamic programming.
Athena Scientific.

Bertsekas, D. P., Castanon, D. A., et al. (1988).
Adaptive aggregation methods for infinite horizon dynamic
programming.

Orso Forghieri State Abstraction discovery 54 / 54

IEEE Transactions on Automatic Control.

Chen, G., Gaebler, J. D., Peng, M., Sun, C., and Ye, Y. (2022).
An adaptive state aggregation algorithm for markov decision
processes.
In AAAI 2022 Workshop on Reinforcement Learning in Games.

Clement, J. G. and Kroer, C. (2021).
First-order methods for wasserstein distributionally robust mdp.
In International Conference on Machine Learning, pages
2010–2019. PMLR.

Hengst, B. (2012).
Hierarchical approaches.
In Reinforcement learning, pages 293–323. Springer.

Powell, W. B. (2007).
Approximate Dynamic Programming: Solving the curses of
dimensionality, volume 703.
John Wiley & Sons.

Sutton, R. S. and Barto, A. G. (2018).

Orso Forghieri State Abstraction discovery 54 / 54

Reinforcement learning: An introduction.
MIT press.

Tournaire, T., Jin, Y., Aghasaryan, A., Castel-Taleb, H., and
Hyon, E. (2022).
Factored reinforcement learning for auto-scaling in tandem queues.
In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium, pages 1–7. IEEE.

Orso Forghieri State Abstraction discovery 54 / 54

	Reinforcement Learning
	Markov Decision Processes
	Dynamic Programming and Approximate Dynamic Programming
	Hierarchical Reinforcement Learning

	Progressive State Space Disaggregation
	Quality of a piecewise constant value function
	Progressive Disaggregation
	Experience

	Conclusion

