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Abstract—To enhance the user experience on mobile devices,
Mobile Edge Computing (MEC) is a paradigm which inte-
grates computing capabilities directly within access networks.
However, designing efficient computation offloading policies in
MEC systems remains a challenge. In particular, the decision on
whether to process an incoming computation task locally on the
mobile device or offload it to the cloud must intelligently adapt
to dynamic environmental conditions. This article presents
a novel approach that aims to address an edge computing
optimization problem, issued from industrial cases, by modeling
it as a combinatorial optimization problem combining multi-
commodity flow and linear latencies constraints. We develop an
equivalent linear formulation of the Service Placement Problem,
allowing us to use traditional Integer Linear Programming
(ILP) methods that turns out to be inefficient in practice.
We therefore develop a use-case-based heuristic and a Rein-
forcement Learning (RL) methodology to model the network
configuration under orchestration actions. The latest allows
us to transfer learning across pre-training of the agent and
shows proof of its efficiency on a dynamic real-world instance,
aiming for practical deployment conditions. This comparison
reveals that RL is a robust approach that can solve large
realistic instances, reaching an optimality gap smaller than
25% on average below a second of runtime for dynamic service
placement.

Index Terms—edge computing, reinforcement learning, linear
programming, service placement, modeling.

I. INTRODUCTION

Following the increasing connectivity of portable devices
and applications such as augmented reality, the need for
computation and low-latency solutions has risen significantly.
However, these services induce heavy network loading, which
contradicts low-latency requirements. In this context, Mobile
Edge Computing (MEC) is a method that allows the offload-
ing of remote servers and links by placing services closer
to the user [1]. Through computations and caching closer
to the user, network loading and latency can be drastically
reduced, resulting in a global improvement in the Quality of
Experience (QoE) for users.

Several models of the resource allocation problem in the
MEC context have been proposed. Given the necessity of fast
network orchestration decisions, a compromise is required
between the computation time of the placement and the
expected QoE. In particular, most of the combinatorial opti-
mization problems studied in this context have been proven to
be NP-hard [2], and exact methods doesn’t scale on realistic
instances. Thus, approximation and heuristic algorithms have
been proposed in the literature to provide feasible sub optimal
solutions for resource allocation.

Given the diversity of graph instances, resource allocation
methods must be scalable and adaptable. Reinforcement
Learning (RL), a framework that learns behavior through
environment interaction and feedback [3], is considered for
this purpose. However, RL struggles with high dimension-
ality, especially in large decision spaces. Deep RL partially
addresses this by using neural networks to extract relevant
information from large systems [3] and transferring knowl-
edge across network configurations [4]. However, deep RL’s
effectiveness is impacted by the size of the action space, and
its performance guarantees are difficult to assess. Estimating
its time efficiency and performance remains a challenging
but necessary task for operational validation, which has been
infrequently explored.

This paper deals with MEC use cases inspired by several
network operators in [5]. It present a practical scalable
approach to service placement decision making by realistic
network modeling and Reinforcement Learning solving. We
formulate the problem linearly for exact resolution. Due to
its NP-hardness, we propose a heuristic based on real net-
work structures and a RL framework for efficient solutions.
Benchmarks show that exact methods don’t scale, and the
heuristic struggles with complexity, while Deep RL offers a
robust, adaptable solution for online settings.

In Section III, we model Service Placement in Edge
Computing as a combinatorial optimization problem that we
then linearize. Section IV-B develops a practical heuristic



based on real-world instances, and Section V presents the
RL framework. Finally, Section VI benchmarks the static and
dynamic capabilities of the RL approach.

II. RELATED WORK

Mobile Edge Computing has been widely investigated as
the next immediate improvement of the 5G network through
adapted resources allocation for Quality of Experience pur-
pose [5]. In this context, authors proposed multiple modelings
of the service placement problem to deal with tasks requiring
low-latency [6]. Salaht et al. proposed a rich overview of
these placement approaches [7]. We note that several models
include a Multi-Commodity Flow (MCF) to take network
orchestration decisions [8]. However, those problems design
often induces NP-complete decision problems [9]. Deep RL
has recently been applied to address various problems in com-
binatorial optimization (see [10] for a comprehensive review).
Hence [11], [12] consider RL for solving Multi-Commodity
Flow, mainly by transforming network configurations into an
environment state, optimizing it step by step.

In communication and networking, several studies have
leveraged Deep Q-Learning-based methods. For service
placement problem [13] or to tackle resource allocation and
offloading issues in cache-aided MEC networks [4], [14]-
[18]. Various criteria such as induced delay or Quality of
Experience are optimized, however, an in-depth comparison
of runtime, optimality gap and performance of the proposed
RL or heuristic approaches is rarely provided. Moreover, RL
modeling is not always precisely formalized. As explainabil-
ity is often seen as a challenge for Deep RL, it is nevertheless
essential to detail how the method learns and operates, and
what advantages can be extracted to improve existing proven
approaches. Some studies have proposed problem-specific
policy decompositions to enhance explainability [19].

Compared to existing works, we observed that real-world-
based combinatorial optimization models for the MEC chal-
lenge are rare, and there is limited runtime comparison
between the RL approach and exact ILP solving. Moreover,
most of the studies do not estimate the adaptive capacities
of RL in the online context. To balance this, our approach
details a linear programming model of the service placement
for latency optimization, as well as the RL problem design.
We finally assess both in static and dynamic situations.

III. PROBLEM SETUP

This section defines the Service Placement Problem as a
joint placement and routing task under a maximum latency
constraint. Services are assigned to resource-limited nodes,
with associated demands contributing to edge saturation and
increasing network latency.

A. Context

Inspired by use cases like drone control and smart ware-
houses [5], we model a network with many mobile users
offering limited caching and computing capacity. These users

connect to 5G antennas that help offload tasks from cloud
servers. Each user requires a single type of resource (e.g.,
cached data or image processing), provided by cloud or
selected local servers. To ensure performance, we impose a
maximum latency per demand. The problem is thus framed
as a service placement task with linear latency, aiming to
maximize user Quality of Experience (QoE), assumed to be
proportional to the total data flow. Our problem addresses
three key decisions. First, selecting the server for each
service, modeled with variable y to enable offloading closer
to users. Second, determining the service quality or data flow,
represented by g, which we aim to maximize as a proxy for
Quality of Service. Third, routing decisions are captured by
x. Overall, the goal is to maximize flow through joint service
placement and routing, under latency constraints.

B. Problem Design

The network is modeled as a graph G = (V, &), where
nodes represent users, access points, and servers, and edges
represent network connections. Following the network or-
chestration context [7], we introduce three decision variables,
namely x5 € {0,1} for routing, y% € {0,1} for placement
and qq € {¢d.min;, - - -, ¢d.max ; for the flow. In our model, each
node provides resources res’ € RT such as storage, CPU or
GPU resoures which are available for any service. The edges
support a flow/bandwidth between 0 and capa®, representing
the bandwidth usage. For each edge, the induced latency is
modeled to depend linearly on the flow that the edge carries
[20]:

lat® = a® - qq + B°.
The notations and typical numerical values used in the graph

and instances design are summarized in Table I following
[21].

TABLE I
MAIN GRAPH PARAMETERS AND VARIABLES

Symbol Parameter Typical Value
capa® € NT | Maximum flow 1-100 Mbps
res® € N Resources 10 TB-10 PB
pBe € RT Base latency 1 ms

a® e RT Induced latency 1 ms/Mbps
lat? € RT Required letency | 10 ms

The main decision is where to place a service within the
graph, allowing data to pass through the user, an Edge Server,
or the cloud. In 5G, services typically run in the cloud unless
users have significant onboard computing power. The second
decision concerns the discrete Quality of Service qq, selected
from a range gqmin; - - - » ¢d,max With gq min > 1. Each demand
must respect a maximum latency laty max, computed as the
sum of latencies along its path. An instance includes multiple
services, each S € S defined by a set of demands with fixed
origins d, (e.g., users or the cloud). Each service must be
placed on a node offering rg € R™ resources. Demands are
routed from their origins to the placement node. The goal is to



maximize total Quality of Service under various constraints,
defining the combinatorial Service Placement Problem (SPP).

max » qq (SPP)
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In (SPP), we maximize the QoS i.e. > dep Q- Any service
S € S is placed following the constraint ) ., yg > 1
on the node v such that y§ = 1. For each node v, its
available resources res” should not be exceeded by usage
given the inequality ) ¢ s y4rs < res’. The routing and
flow conservation is then ensured by

S () = 11
fes(v)
We then constrain the edge capacity using the quadratic
inequality ), 5 qqx§ < capa®. Given the linear latency
model, we ensure each demand latency to be at most lat? by
enforcing

fol (ae Z AexXy + Be> < lat?,
e€E d’eD

computing the total flow crossing each edge being visited by
the current demand flow. Following the use cases, deploying
any service on the cloud while ensuring the minimum Quality
of Service (QoS) should constitute a feasible solution to the
initial problem.

IV. LINEARIZATION AND HEURISTIC
A. Linearization

The non-linearity of Service Placement Problem can be
tackled introducing new variables and constraints that allow
to eliminate the product of variables qq and x{; introducing
the variables Q¢ that models the flow on each edge and L
that models the latency. To ensure that Q§ = q4 - x5, we add
the following constraints to the problem:

Q5 < M -x3 Vd, Ve
Qi>qq— M- (1-x3) Vd, Ve
Q< ag Vd, Ve

The second linearization is done to reduce the product
x4 (oze Yowep Qy + ﬁe) into a latency variable L setting
N :=a®- D - maxgep qd,max + 5° by adding:

L <N -x3 vd, Ve

Li>a ) Qy+8° —N-(1-x5  VdVe
d’'eD

Li<a® > Q4+ 5 vd, Ve
d’'eD

We therefore obtain a linearized problem, replacing the
products by the variables Q¢ and L§, and adding the previous
constraints. This new problem being linear, it can be solved
by a classical ILP solver like Gurobi or CPLEX. However,
the number of variables and constraints is large, making the
resolution of medium instances already difficult given its
complexity. In the following, we propose practical solving
methods to approach the optimal value of this problem.

B. Heuristic Approach

To solve the Service Placement Problem, we propose a
heuristic method that relies on the basic cloud placement and
solves the resulting routing problem greedily. This approach
primarily relies on the special structure of the network.
Assuming that the largest servers are positioned at the top
of the hierarchy, placement is considered as the primary
variable to determine. Once the placement is completed,
the problem can be formulated as a Multi-Commodity Flow
(MCF) problem with additional linear latency constraints.
The MCF problem is typically addressed using a greedy
approach [22].

A solution is the tuple (y,q,x) in which each term is
a vector composed of the decision variables described in
section III-B and the heuristic then develops as follows:

(1) Place all services on the largest available server using

the shortest path: y4°*d =1 and Vd € d, pq = 1;

(ii) For each demand with the greatest margin mg4 to max-
imum latency and arc capacity, increase the associated
flow ¢4 until the path is saturated;

(iii) Displace one random service to a smaller server and
reroute it using greedily increased flows;

(iv) Return the best visited solution.

A direct improvement of this method is to refine the best
solution obtained from this heuristic. Since this placement is
likely to be promising, we set it in the Service Placement
Problem and solve the remaining linearized subproblem of
routing under linear latency constraint.

V. REINFORCEMENT LEARNING METHOD

RL offers a flexible framework for modeling problems as
step-by-step improvement processes. By exploring solutions
and adapting to feedback, an agent learns to converge to
effective strategies. In this section, we present the RL model
used for the Service Placement Problem, detailing the envi-
ronment design. An RL problem is defined as (S, .4, T, R),
where s € S is the state, a € A an action, R(s,a,s’)



the reward, and T'(s,a,s’) the transition probability. The
agent updates its policy from trajectories (s;,a;,7¢)i>0 to
maximize expected cumulative rewards.

Here, the state s = (x,y,q) captures the current environ-
ment with x = (x5),q = (qq) and y = (y%). The state space
S encompasses all possible configurations. While larger state
spaces offer more information, they reduce efficiency. Unlike
previous DRL works that use redundant state details, we
adopt a compact form. Instead, the neural network receives
an observation which is a refined vector combining the state
and useful derived information o = (X,y, q, Ges; Sdes)-

Here, G4es contains a complete description of the current
state of the graph, including exhaustively the capacity, con-
gestion and latency of the edges, the resources and usage of
the nodes. Concerning the services, Sges includes the problem
constraints (maximum latencies latd, resources needed rg,
minimum and maximum flows ¢gmin and g4 max) but also
information about the current chosen solution (latency for
each demand, proportion to maximum latency and length
of each path). Some information of Sy are based on the
problem instance and are only integrated within the dynamic
setting to improve the RL adaptiveness. We initialize each
episode with the known feasible solution associated with the
cloud placement.

The action space is made of vectors of the following shape:

a = (atypea Gnode Aroutes Aq 57 d) .
The decision type aype takes values in:
{replacement, reroute, quantities } .

Choosing replacement action results in displacing the
service .S to the node a4 € V. Choosing the reroute action
makes the demand d being rerouted using the index a;oue €
{0,...,n}. Finally, selecting the action aype = quantities
adds a value a, € {0, £1} to the quantity g4. We note that for
each rerouting or service displacement, we reset the quantities
of concerned demands to gq min. We choose to restrict the
exploration to feasible solutions only. That is, an action is
applied only if the next resulting solution remains feasible,
thereby reducing the exploration phase. As a consequence,
there should exist a path of states starting from the initial
state to a state with a high objective value.

A common strategy is to define the reward function as
the optimization objective, but this can lead to local max-
ima. To avoid this, the reward is designed to capture local
improvements, encouraging better flows while penalizing
inefficient routing and excessive service displacement. The
reward function r; used is:

maX(O, Gtotal, next — Qbest) if changing flow

—10 if failed service displacement
-2 if failed demand rerouting
-1 otherwise

Here, giotal, next 15 the objective value of the next state, and
Qrest 18 the best value encountered during the episode. This

RL setup leads to the experimental results discussed in the
next section.

VI. EXPERIMENTATION DESIGN

This section presents numerical results to evaluate the
proposed algorithm. First, we compare RL, the ILP approach,
and the heuristic on a single instance, which is the most
challenging for RL due to the lack of pre-training. Despite
this, RL performs reasonably well by extracting valuable in-
formation from the problem. In the second part, we consider
a dynamic case with changing placement requests. The RL
approach, unlike ILP, adapts to new configurations quickly
using pre-trained data, providing efficient placement and
routing solutions crucial for real-time orchestration.

A. Instance Design

To match the warehouse instance of [5], the study ex-
amines a star-shaped structure, designed to reflect real-
world network architectures with realistic parameters for edge
computing use-cases [23]. Key network aspects include:

o Connectivity: User-to-user connections (e.g., Bluetooth)
are proximity-based, with strong, low-latency connec-
tions to the Edge (5 ms base latency with low vari-
ation), though susceptible to saturation (at most 10
Gbps). Edge-to-Cloud connections offer higher capacity
(1 Tbps), but latency increases with network load.

o Node Resources: A single resource type (e.g., CPU
or memory) is considered, with the highest resource
availability in the Cloud (10 PB), decreasing towards
the lower network layers (10 TB on the edge).

We design an initial tree-shaped network, where users are
connected to an Edge Server (e.g., a WAP in a warehouse).
Services can be deployed locally, at the edge, or in the
cloud. As the network expands, we arrange multiple parallel
trees in a star configuration centered around the cloud server
(Figure 1), which increases the complexity of the ILP due to
potential network saturation. The RL approach addresses this
by penalizing distant edge server placements with negative
rewards or by producing infeasible solutions. We scale the
instances up to 500 nodes, representing a medium-sized
warehouse, accounting for all connected devices [24].

Fig. 1. Star-shaped network model with 4 edge servers.



B. Implementation Details

We compared three methods: Integer Linear Programming
(ILP), the heuristic approach (Section IV-B), and RL (Section
V). The benchmark was implemented in Python using the
Gurobi solver [25] for ILP and the Gymnasium library [26]
for RL. We converted network parameters to Gurobi variables
for faster ILP solving and built an RL simulator using the
StableBaselines3 implementation. All solvers ran on
CPUs with a memory cap of 16GB and 6 threads on an
Intel Xeon 3.2GHz processor for a fair comparison. For Deep
RL, we tested Deep Q-Learning, Advantage Actor-Critic,
and Proximal Policy Optimization (PPO) [27]. Based on fast
adaptation during the learning phase, we selected PPO for its
stable learning and controlled policy adjustments.

The principle of PPO is to improve an agent’s policy
by optimizing a clipped objective function, which ensures
stable and reliable updates. During the learning phase, the
policy is approximated and updated using a neural network
(NN). A second neural network is used to approximate the
advantage function. Given the inputs in our problem, we
use fully connected layers to extract information from the
states. More specialized NN architectures have not yielded
conclusive results in training our model. This algorithm is not
guaranteed to converge, so the user must manually provide a
stopping criterion. The most commonly used criterion is the
average reward per episode. Typically, the average reward
stabilizes after a certain number of episodes and ceases to
improve. We choose to stop the algorithm when there is no
further progress in the average episode reward.

VII. RESULTS
A. Specific instance Solving

We focus now on the solving of a single instance. We start
from the main feasible solution and we generated episodes
using the agent policy. We then update the current policy
along those trajectories. Given a network configuration with
a fixed service set, the agent performs placement attempts and
learns from next states. The final returned result is the best
placement and routing discovered in the total training process.
As we observe in Figure 2, the heuristic approach provides
a consistent objective but is relatively slow. Nevertheless,
it offers a good initial solution. The ILP resolution, on the
other hand, requires a significant amount of time and lacks
scalability: computation time quickly reaches 10 minutes,
after which the solver fails due to insufficient RAM.

Notably, the Gurobi solver exhibits high memory consump-
tion during problem construction. Once the memory usage
exceeds 16GB, the solver is not even able to fully construct
the problem and therefore cannot start the solving process,
which explains the instance size limit reached by the ILP
curve. Consequently, an intermediate method in terms of
computational time is desirable. The PPO resolution serves as
an excellent trade-off: its computational time remains nearly
constant, and the obtained objective is correct, achieving
approximately 75% of the optimal value on average. We point

out that the RL runtime presented here includes the whole
training process of the RL agent.
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Fig. 2. Plot of objective reached vs. runtime depending on the star-shaped
instance size.

B. Dynamic Problem Solving

The RL framework is not only expected to explore the
environment, but also to adapt to unseen situations. In our
context, we aim to evaluate the adaptation capabilities of
a pretrained RL model. To this end, it is necessary to
select a set of training instances that can reasonably reflect
potential future scenarios. The design of the training process
is therefore critical for ensuring meaningful experience: train-
ing and testing instances should present a realistic level of
difficulty, and the gap between the two phases should remain
reasonable.

For the training set, we generate instances with randomized
origins and variable latency and quantity constraints. The test
set is designed to emulate a dynamically changing network:
across 10 consecutive situations, a single service is replaced
with a new one at each step. For each evaluation instance,
we compute the average runtime and performance for service
flow placement, routing, and configuration.

While the RL model is able to adapt incrementally from
one instance to the next one, the ILP solver must reset
and resolve each instance from scratch. Table II presents
the results, where the tree and star instances have 50 and
100 users, respectively. As expected, ILP had a long solving
runtime, with RL being, on average, 50 times faster. ILP also



struggled with larger instances due to memory limitations.
This highlights the challenge of linear programming in adapt-
ing to problem variations and leveraging problem structure
for faster solving. The RL model achieved, on average, 75%
of the optimal objective value of the ILP. The short adapting
time of RL allows a deployment for orchestration purpose.

TABLE II
AVERAGE OBJECTIVES AND RUNTIMES IN A DYNAMIC CONTEXT.

Instance Tree-50  Tree-100  Star-50  Star-100
ILP 80.2 266.0 63.7 252.3
Runtime (s) Heuristic 4.7 17.7 6.5 19.5
RL 1.7 4.6 1.2 1.9
ILP 370.0 700.0 480.0 700.0
Objective Heuristic 100.9 198.5 111.5 197.5
RL 278.5 582.7 265.4 500.8
Heuristic 72.7 71.6 76.8 71.8
Opt. Gap (%) gy, 24.7 16.8 447 285

VIII. CONCLUSION

We tackled the service placement problem constrained
by latency and edge capacity, that arises in a real Edge
Computing context. To speed up the solving process, we
proposed a linear version of the problem, sacrificing some
solution quality, and developed a heuristic based on net-
work structure knowledge. Additionally, we introduced a RL
framework, which showed strong performance in both static
and dynamic cases. RL demonstrated scalability for large
instances and adaptability by using pre-training to transfer
network knowledge and handle new scenarios.

We aim to refine the RL learning process further to
improve solution quality. One potential enhancement is in-
tegrating the three-part problem structure from the heuristic
into a Hierarchical RL framework, which could better target
the placement, routing, and flow tasks. Additionally, we plan
to extend our approach to other industrial use cases with
more precise latency models, such as those based on edge
congestion, which may not be solvable by ILP.
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