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Markov Decision Processes
Observable State st, Action at, Reward rt, Next state st+1

Optimization problem : maxπ∈AS
∑

t≥0 γ
trt, γ = 0.99
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Figure 1: Principle of Reinforcement Learning [Sutton and Barto, 2018].

Orso Forghieri State Abstraction Discovery 2 / 40



Four Rooms instance

Four rooms:

S = J1, 100K, A = {N,S,E,W}
Reward: −1 until exit is reached, 0 otherwise.

Step forward success with probability .8 (if step is doable)
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Four Rooms instance

Naturally hierarchical!

Spatial: each room as a single state

Temporal: learn to exit a room
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Hierarchical Reinforcement Learning

Why use HRL in MDPs?

Solving large MDPs

Enhancing explainability and interpretability of MDPs

Ensuring solution quality

How to implement it?

Subgoal discovery and meta-action learning (temporal abstraction)

Building approximate MDPs using spatial abstraction, with
limited explicit methods
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Related works

Handling Large MDP Spaces:

With factorization hypothesis1

Hierarchical approach2

State information abstraction3

State aggregation and abstraction discovery:

Abstraction discovery4

Abstraction and MDP approximation5

MDP solving acceleration6

1
[Guestrin et al., 2003, Siddiqi et al., 2010]

2
[Sutton et al., 1999, Li et al., 2006, Hengst, 2012]

3
[Pineau et al., 2003, Coulom, 2006]

4
[Singh et al., 1994, Dean and Givan, 1997, Abel et al., 2016, Ferrer-Mestres et al., 2020]

5
[Tsitsiklis and Van Roy, 1996, Abel, 2019, Gopalan et al., 2017]

6
[Bean et al., 1987, Bertsekas et al., 1988, Ciosek and Silver, 2015, Abel et al., 2020,

Jothimurugan et al., 2021]
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Context and work

In this talk, we present:

MDP solving context

The HRL approach

Our contribution7

In state abstraction, we:

Link MDP abstraction and Approximate Dynamic Programming

Estimate error induced by abstraction

Present a practical way to abstract MDP and solve them exactly

Conduct a numerical comparison using real-world models

7[Forghieri et al., 2024]
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MDP solving approach

Solving the MDP ⇐⇒ Maximizing upcoming rewards relatively to π

⇐⇒ max
policy

E
at=π(st)

∑
t≥0

γtrt

∣∣∣∣∣∣ s0 = s


⇐⇒ max

π∈AS
V π(s) := V ∗(s)
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Value functions definitions

The expected reward applying π, V π:

V π(s) = E
at=π(st)

∑
t≥0

γtrt

∣∣∣∣∣∣ s0 = s


The optimal value function:

V ∗(s) = max
π

V π(s)

Moreover, V ∗ is solution of the optimal Bellman equation (fixed point
equation):

V ∗ = max
a∈A

(Ra + γ · Ta · V ∗) := T ∗V
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How to find V ∗ or π∗ ?

Dynamic Programming approaches8:

Value Iteration

Vt+1 ← T ∗Vt until ∥V ∗ − Vt∥∞ ≤ ε

Policy Iteration Modified, where we iterate{
Vt+1 ← (T π)mVt

πt+1 ← argmaxa∈A (Ra + γ · Ta · V πt)

8[Sutton and Barto, 2018]
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MDP solving

In general,

Solve an MDP ⇐⇒ Solve max
π

V π

(Actor-Critic, Deep RL...)

⇐⇒ Solve min
V ∈RS

∥V − T ∗V ∥∞

(Dynamic Programming, TD-Learning...)

Orso Forghieri State Abstraction Discovery 12 / 40



Table of Contents

1 Markov Decision Processes

2 State Abstraction

3 Abstraction Refinement
Quality of a piecewise constant value function
Progressive Disaggregation
Experience

4 Conclusion

Orso Forghieri State Abstraction Discovery 13 / 40



Hierarchical RL — State Abstraction
MDP approximation from state space partition:

1 2

3 4

Less states, same action space:

S =
⊔
k

Sk → K = {s1, . . . , sk}

Averaged transition and reward:

T → ω · T · ϕ

R→ ω ·R
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State Abstraction Definition

Definition (Abstract MDP [Li et al., 2006])

GivenM = (S,A, T,R) s.t. S =
⊔

k Sk, the abstract MDP

(K,A, T̃ , R̃)

is defined using

Averaged transition T̃ = ω · T · ϕ
Averaged reward R̃ = ω ·R
Abstract state space K = {sk}

where

ω ∈ [0, 1]K×S weights with sum 1 on each region

ϕ = (1s∈Sk
)s,k
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Approximate Bellman Operator

An L2 approximation of the optimal Bellman operator

T ∗ = V → max
a∈A

(Ra + γ · Ta · V )

is its averaged version9

ΠT ∗(V ) = ϕ · ω · T ∗(V ) = ϕ · argmin
VA∈RK

∥ϕ · VA − T ∗V ∥2

which is less complex to compute!

Moreover, Ṽ ∗ solution of V = ΠT ∗V checks

∥Ṽ ∗ − V ∗∥∞ ≤ max
1≤k≤K

maxSk
V −minSk

V

1− γ
.

9[Tsitsiklis and Van Roy, 1996]
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Notes on State Abstraction

We note that:

Grouping similar states limits approximation made10:

∀s, s′ ∈ Sk, |Q∗(s, a)−Q∗(s′, a)| ≤ ε =⇒ ∥V ∗ − V π̃∥∞ ≤ K · ε

Efficient partition criterion often depends on V ∗, Q∗, π∗...

We propose to:

Estimate the quality of any valuation of state abstraction

Refine abstraction along VI steps

10[Abel et al., 2016]
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Approximate Bellman Operator and Abstraction

Approximate Bellman ΠT ∗
Q = ϕ · ω · T ∗

Q is the exact Bellman of an

abstract MDP:11

Lemma (O.F.)

For any state abstraction (K, ω, ϕ) and its value function
QA = ω · Q̃ ∈ RK ,

ϕ · T ∗
Q,AQA = ΠT ∗

Q(ϕ ·QA)

11[Forghieri et al., 2024]
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Approximate Bellman Operator and Abstraction

Proof.

For any QA ∈ RK ,

ϕ · T ∗
Q,AQA = ϕ ·

(
R+ γ.T ·max

a∈A
(QA)

)
= ϕ ·

(
ω ·R+ γ · ω · T · ϕ ·max

a∈A
(QA)

)
= ϕ · ω ·

(
R+ γ · T ·max

a∈A
(ϕ ·QA)

)
= Π ·

(
R+ γ · T ·max

a∈A

(
Q̃
))

= ΠT ∗
QQ̃
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Quality of a piecewise constant value function

Theorem (Quality of a piecewise constant value function, O.F.)

GivenM, its abstraction (K, ω, ϕ), and the piecewise constant value
function Ṽ ,

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

T ∗Ṽ + ∥Ṽ −ΠT ∗Ṽ ∥∞
)

where SpanSk
V := maxs∈Sk

V (s)−mins∈Sk
V (s).

→ Dependence on the Ṽ (≡ value function on the abstract MDP) and
on the aggregation structure !

→ True for T ∗
Q, T π
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Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

T ∗Ṽ + ∥Ṽ −ΠT ∗Ṽ ∥∞
)

Two terms:

max1≤k≤K SpanSk
T ∗Ṽ : do we lose information aggregating ?

∥Ṽ −ΠT ∗Ṽ ∥∞: is Ṽ close to optimal value of abstract MDP ?
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Proof of the theorem

Proof.

(1− γ)∥V ∗ − Ṽ ∥∞ ≤ ∥Ṽ − T ∗Ṽ ∥∞
≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ + ∥ΠT ∗Ṽ − T ∗Ṽ ∥∞
≤ ∥Ṽ −ΠT ∗Ṽ ∥∞ +max

k
SpanSk

T ∗Ṽ
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Quality of a piecewise constant value function

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

T ∗Ṽ + ∥Ṽ −ΠT ∗Ṽ ∥∞
)

Fortunately,

max1≤k≤K SpanSk
T ∗Ṽ can decrease refining aggregation (Sk)k

∥Ṽ −ΠT ∗Ṽ ∥∞ can decrease iterating ΠT ∗ over Ṽ

ΠT ∗ is simple to compute
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Approximate VI is cheaper to compute

Operator Complexity Approximation Complexity

T ∗ S2A ΠT ∗ SKA

T π S2 ΠT π K2

T ∗
Q S2A ΠT ∗

Q K2A

Table 1: Number of operations necessary to update a value function. K ≪ S
generally.

→ Simpler to compute, contract space with factor γ, but converge to
Ṽ ̸= V ∗... Need to refine aggregation lowering the span !
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Progressive State Space Disaggregation Process

We propose starting with a trivial abstraction:

K = 1, S1 = S, Ṽ0 = (0)s∈S

Then iterate as follows:

1 Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ ≤ ϵ

2 Refine each region by splitting until

max
Sk

T ∗Vt −min
Sk

T ∗Vt ≤ ε

holds for each region k.

→ This process converges to V ∗ with arbitrary accuracy.
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Disaggregation process
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Figure 2: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]
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First disaggregation step
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Figure 3: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]
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Second disaggregation step
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Figure 4: Disaggregation process applied to Tandem Queues model
[Tournaire et al., 2022]

→ Problem when |K| → |S|, no more gain...
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Progressive Disaggregation Convergence

Theorem (Final Abstraction Quality, O.F.)

Considering the final value and abstraction (VA, (Sk)k),

1 the process finishes in a finite number of steps.

2 the distance to optimal value function checks:

∥ϕ · VA − V ∗∥∞ ≤
2ϵ

1− γ

Moreover, for any region k,

∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
.

→ Abstraction quality is ensured!
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Progressive Disaggregation Convergence

Proof.

Two main arguments :

1 The number of partition strictly increases at each step

2 The bound

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

T ∗Ṽ + ∥Ṽ −ΠT ∗Ṽ ∥∞
)

ensures the claimed final precision.
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Remarks

Advantages :

Saving time on ΠT ∗ iterations

Final Abstraction sometimes smaller than original mdp : K ≪ |S|
Convergence guarantee !

Risks :

Too many disaggregation steps (maximum |S|)
The final abstraction could be the original MDP itself !
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Performance Evaluation

Solving an MDP depends on

Its structure (|S|, |A|, density of the transition matrix...)

Wanted final precision to approximate V ∗ (ε = 10−3 ⇏ π = π∗...)

Chosen discount γ and expected length of the trajectory
(γ ≪ 1 ⇐⇒ Value Iteration ≫ Policy Iteration)

→ We compare algorithm on the runtime ensuring the same final
precision
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Toys models

Four Rooms [Hengst, 2012]

Racetrack [Sutton and Barto, 2018]

slides/2024_09_16_argo/images/racetrack.png

Figure 5: Four Rooms and Sutton’s racectrack models
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Real-world models
Servers in tandem and stochastic arrivals [Tournaire et al., 2022]
Hydro-valley electricity production management
[Carpentier et al., 2018]
Inventory Control [Winston, 2004]
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Figure 6: Hydro-valley electricity production management [Carpentier et al., 2018]
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Solving methods
Traditional Dynamic Programming

Value Iteration

Modified Policy Iteration

Our (Progressive Disaggregation) adapted to

Value Iteration, Q-Value Iteration

Modified Policy Iteration

Alternative Aggregation approach

Modified Policy Iteration with adaptive aggregation boosting
[Bertsekas et al., 1988]

Aggregation-disaggregation for Temporal-Difference learning
[Chen et al., 2022]

Work in Progress: Abstraction building and solving
[Ciosek and Silver, 2015], no precision guarantee

Orso Forghieri State Abstraction Discovery 36 / 40



Runtime comparison

Rooms Barto Tandem Hydro-valley Inventory
|S| 193.6k 1M 19.6k 118k 250k

PDVI 11712.5 73501.4 979.4 >24h 2877.4
PDQVI 160.3 46.8 657.4 >24h 1458.5

VI 2520.2 46524.7 553.2 >24h 4032.7
Chen 12844.1 33238.3 >24h >24h >24h

PDPIM >24h 18044.8 254.2 2051.0 >24h
PIM >24h 20164.2 348.8 2273.9 >24h

Bertsekas >24h 33238.3 >24h >24h >24h

Table 2: Runtimes for solving different models. Discount γ = 0.9999, final precision
ε = 10−3.

→ Reasonable gain of time for real-world models.
→ Necessity of a very high discount!
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Remarks

Experimental Results:

For toy models, a suitable decomposition generally exists →
runtime reduced by a factor of 15

For real-world models: runtime reduced by a factor of 1.3

Limitations:

Modest improvements for real-world models with non-smooth
optimal value functions: leads to trivial abstraction almost
immediately

For maze-like models, state space exploration is slow, with no
improvement in Value Iteration or Policy Iteration Methods
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Conclusion

In those slides:

Hierarchical RL context

Link between Approximate DP and State Abstraction

Practical State Abstraction discovery criterion

MDP solving benchmark

Upcoming work :

Total reward convergence proof

Larger benchmark

How to transpose it to model free ?

Thank you for listening!
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